一种基于自适应集成深度学习模型的SC-FDE系统信号检测方法
基本信息
申请号 | CN202010448707.4 | 申请日 | - |
公开(公告)号 | CN111614587B | 公开(公告)日 | 2021-04-06 |
申请公布号 | CN111614587B | 申请公布日 | 2021-04-06 |
分类号 | H04W52/34(2009.01)I;G06N3/08(2006.01)I;G06K9/62(2006.01)I;H04L25/03(2006.01)I;G06N3/04(2006.01)I | 分类 | 电通信技术; |
发明人 | 李军;高通;李敬芳;王宝栓;朱平;乔元健;高鹏刚;辛同亮;李文鑫 | 申请(专利权)人 | 亚萨合莱国强(山东)五金科技有限公司 |
代理机构 | 济南泉城专利商标事务所 | 代理人 | 张贵宾 |
地址 | 250353山东省济南市长清区大学路3501号 | ||
法律状态 | - |
摘要
摘要 | 本发明涉及一种基于自适应集成深度学习模型的信号检测方法。采用集成的长短期记忆(LSTM)神经网络以端到端的方式替代SC‑FDE系统接收端的信道估计和频域均衡部分,训练LSTM神经网络所需的数据集由接收端提取的接收信号的特征和根据发送端使用的调制方式对应星座图所分配的标签组成。为保证系统的可靠性,采用线性判别分析(LDA)算法对特征信息进行降维,将多维度的特征信息作为集成模型的输入。为提高系统的自适应性,采用不同子信道的信号功率作为自适应因子,在网络输出端对每个子载波的输出进行自适应集成。此方法对于不同的通信系统,只需要根据所用系统框架生成数据集,利用训练得到的模型替代通信系统的某一部分即可,具有较强的泛化性。 |
